THE HUNDRED LIGHT YEAR DIARY - Scientists can bounce messages from the future back to the present, but there's no guarantee they'll tell the truth ... LEARNING TO BE ME - Crystalline minds may take the place of human brains, but where does the self really lie? CLOSER - Lovers exchange bodies and minds, but their experiments go just that little bit too far, proving that you can have too much of a good thing

TRENDS IN LINGUISTICS is a series of books that open new perspectives in our understanding of language. The series publishes state-of-the-art work on core areas of linguistics across theoretical frameworks as well as studies that provide new insights by building bridges to neighbouring fields such as neuroscience and cognitive science. TRENDS IN LINGUISTICS considers itself a forum for cutting-edge research based on solid empirical data on language in its various manifestations, including sign languages. It regards linguistic variation in its synchronic and diachronic dimensions as well as in its social contexts as important sources of insight for a better understanding of the design of linguistic systems and the ecology and evolution of language. TRENDS IN LINGUISTICS publishes monographs and outstanding dissertations as well as edited volumes, which provide the opportunity to address controversial topics from different empirical and theoretical viewpoints. High quality standards are ensured through anonymous reviewing.

The first book to integrate axiomatic design and robust design fora comprehensive quality approach As the adoption of quality methods grows across various industries,its implementation is challenged by situations where statisticaltools are inadequate, yet the earlier a proactive quality system isintroduced into a given process, the greater the payback thesemethods will yield. Axiomatic Quality brings together two well-established theories,axiomatic design and robust design, to eliminate or reduce bothconceptual and operational weaknesses. Providing a completeframework for immediate implementation, this book guides designteams in producing systems that operate at high-quality levels foreach of their design requirements. And it shows the way towardsachieving the Six-Sigma target--six times the standard deviationcontained between the target and each side of the specificationlimits--for each requirement. This book develops an aggressive axiomatic quality approachthat: * Provides the tools to reduce conceptual weaknesses of systemsusing a framework called the conceptual design for capability * Reduces operational weaknesses of systems in terms of qualitylosses and control costs * Uses mathematical relationships to bridge the gap betweenscience-based engineering and quality methods Acclaro DFSS Light, a Java-based software package that implementsaxiomatic design processes, is available for download from a Wileyftp site. Acclaro DFSS Light is a software product of AxiomaticDesign Solutions, Inc. Laying out a comprehensive approach while working through eachaspect of its implementation, Axiomatic Quality is an essentialresource for managers, engineers, and other professionals who wantto successfully deploy the most advanced methodology to tacklesystem weaknesses and improve quality.

It is well known that “fuzziness”—informationgranulesand fuzzy sets as one of its formal manifestations— is one of important characteristics of human cognitionandcomprehensionofreality. Fuzzy phenomena existinnature and are encountered quite vividly within human society. The notion of a fuzzy set has been introduced by L. A. , Zadeh in 1965 in order to formalize human concepts, in connection with the representation of human natural language and computing with words. Fuzzy sets and fuzzy logic are used for mod- ing imprecise modes of reasoning that play a pivotal role in the remarkable human abilities to make rational decisions in an environment a?ected by - certainty and imprecision. A growing number of applications of fuzzy sets originated from the “empirical-semantic” approach. From this perspective, we were focused on some practical interpretations of fuzzy sets rather than being oriented towards investigations of the underlying mathematical str- tures of fuzzy sets themselves. For instance, in the context of control theory where fuzzy sets have played an interesting and practically relevant function, the practical facet of fuzzy sets has been stressed quite signi?cantly. However, fuzzy sets can be sought as an abstract concept with all formal underpinnings stemming from this more formal perspective. In the context of applications, it is worth underlying that membership functions do not convey the same meaning at the operational level when being cast in various contexts.

The story of geometry is the story of mathematics itself: Euclidean geometry was the first branch of mathematics to be systematically studied and placed on a firm logical foundation, and it is the prototype for the axiomatic method that lies at the foundation of modern mathematics. It has been taught to students for more than two millennia as a mode of logical thought. This book tells the story of how the axiomatic method has progressed from Euclid's time to ours, as a way of understanding what mathematics is, how we read and evaluate mathematical arguments, and why mathematics has achieved the level of certainty it has. It is designed primarily for advanced undergraduates who plan to teach secondary school geometry, but it should also provide something of interest to anyone who wishes to understand geometry and the axiomatic method better. It introduces a modern, rigorous, axiomatic treatment of Euclidean and (to a lesser extent) non-Euclidean geometries, offering students ample opportunities to practice reading and writing proofs while at the same time developing most of the concrete geometric relationships that secondary teachers will need to know in the classroom. -- P. [4] of cover.

Bibliotheca Mathematica: A Series of Monographs on Pure and Applied Mathematics, Volume V: Axiomatic Projective Geometry, Second Edition focuses on the principles, operations, and theorems in axiomatic projective geometry, including set theory, incidence propositions, collineations, axioms, and coordinates. The publication first elaborates on the axiomatic method, notions from set theory and algebra, analytic projective geometry, and incidence propositions and coordinates in the plane. Discussions focus on ternary fields attached to a given projective plane, homogeneous coordinates, ternary field and axiom system, projectivities between lines, Desargues' proposition, and collineations. The book takes a look at incidence propositions and coordinates in space. Topics include coordinates of a point, equation of a plane, geometry over a given division ring, trivial axioms and propositions, sixteen points proposition, and homogeneous coordinates. The text examines the fundamental proposition of projective geometry and order, including cyclic order of the projective line, order and coordinates, geometry over an ordered ternary field, cyclically ordered sets, and fundamental proposition. The manuscript is a valuable source of data for mathematicians and researchers interested in axiomatic projective geometry.

Proceedings of the 7th International Conference on Axiomatic Design

In the first volume we based quantum mechanics on the objective description of macroscopic devices. The further development of the quantum mechanics of atoms, molecules, and collision processes has been described in [2]. In this context also the usual description of composite systems by tensor products of Hilbert spaces has been introduced. This method can be formally extrapolated to systems composed of "many" ele mentary systems, even arbitrarily many. One formerly had the opinion that this "extrapolated quantum mechanics" is a more comprehensive theory than the objec tive description of macrosystems, an opinion which generated unsurmountable diffi culties for explaining the measuring process. With respect to our foundation of quan tum mechanics on macroscopic objectivity, this opinion would mean that our founda tion is no foundation at all. The task of this second volume is to attain a compatibility between the objective description of macrosystems and an extrapolated quantum mechanics. Thus in X we establish the "statistical mechanics" of macrosystems as a theory more compre hensive than an extrapolated quantum mechanics. On this basis we solve the problem of the measuring process in quantum mechan ics, in XI developing a theory which describes the measuring process as an interaction between microsystems and a macroscopic device. This theory also allows to calculate "in principle" the observable measured by a device. Neither an incorporation of consciousness nor a mysterious imagination such as "collapsing" wave packets are necessary.